# Jet stream variability and predictability

## G. Riviere LMD-ENS

Coll : A. Hermoso<sup>1</sup>, S. Schemm<sup>1</sup>, M. Saint-Lu<sup>2</sup>, S. Fromang<sup>3</sup> <sup>1</sup> ETH, Zurich <sup>2</sup> LMD

<sup>3</sup>LSCE

GDR theorie-climat, 6 juin 2023

## Outline

- 1. Definition of the different jets: Subtropical vs eddy-driven
- 2. Concepts of jet variability: EOFs, regimes, ...
- 3. Trends and future evolution of jets: global vs local pictures
- 4. Subseasonal predictability of North Atlantic jet



Eddy-driven jet in the middle of the Ferrel Cell

## Subtropical vs eddy-driven jets

U@250mb (shadings) U@850mb >8 m/s (white)



- South Pacific: the two jets are well separated
- North Pacific: more merged jets
- North Atlantic: eddy-driven jet well separated from subtropical African jet



Convergence of momentum flux at the same latitude as the stirring region !

## Chain of reasonings to explain jets variability and trends

Observed variability / trend of zonal winds

Observed variability / trend of eddy momentum flux convergence or wave breaking

Observed variability / trend of baroclinic growth (change in latitude, intensity, wavenumbers)

Observed variability / trend of thermal contrasts

## Concepts of jets variability

- Teleconnections : Spatial correlation maps (Wallace and Gutzler, 81) NAO / PNA
- Leadings modes of variability / EOFs
  - Annular modes (EOF1 Z hemisphere ; Thompson and Wallace, 2000) NAO (EOF1 geopotential North Atlantic ; Barnston and Livezey, 1987)

#### - Weather regimes :

4 Wrs in the North Atlantic (Vautard, 1990)

#### - Latitudinal variations of eddy-driven jets :

zonal mean zonal wind distributions (Woollings et al., 2010)



U anom @700-850mb, DJF, daily, Atlantic

## The zonal mean picture of the future evolution of the jets



Poleward shift only visible for high and very high GHG scenarios In the SH, 2 effects : GHG and ozone

## The « tug of war » between upper- and lower-level changes in thermal contrasts



Increase in upper-level baroclinicity leads to poleward shift and decrease in lowerlevel baroclinicity leads to equatorward shift. Each separate effect is clear but no clear consensus on mechanisms !

## From the global to the more regional perspective



No consensus in the wintertime North Atlantic jet !

# Part 1 : Trends in the North Atlantic jet and potential mechanisms

Hermoso et al. (2023, to be submitted)







The temperature trend has a barotropic structure  $\rightarrow$  horizontal gradient of the temperature trend is affecting more the baroclinicity



- more heating over the Gulf Stream region
- less cold air advection (likely due to less land-sea thermal contrasts)

## **ICON** aquaplanet experiments

- 5-year simulations in perpetual winter configuration
- Horizontal resolution of approximately 80 km and 70 vertical levels
- SST baseline distribution with a superimposed SST front with an amplitude of 10 K and located at 30W and different latitudinal positions
- Two simulations:
  - Control: baseline SST and front
  - Warming: baseline SST uniformly warmed by 4 K and front

## ICON aquaplanet runs vs ERA5 trends



## ICON aquaplanet runs vs ERA5 trends



70 80



## Conclusions on NA jet trends / mechanisms

- The North Atlantic jet stream has intensified in winter and roughly remained in place during the last decades
- Diabatic heating has intensified over the Gulf Stream. As a result, baroclinicity and eddy momentum convergence have increased around the jet core.
- The main physical mechanisms can be reproduced with idealized aquaplanet experiments. However, the jet response exhibits a large sensitivity to the position of the SST anomaly

Part 2 : Subseasonal predictability of the North Atlantic jet : the MJO-NAO teleconnexion

#### The Madden Julian Oscillation (MJO) (Madden & Julian 1971, 1972)

Dominant mode of intraseasonal variability in the tropics



#### **Main properties**

•Coupled enhanced/suppressed convection dipole propagating eastward ( $v_{prop}$ ~5 m/s)

- •Typical period ~ 40-50 days
- •Appear in Indian Ocean weakens in eastern Pacific
- •Eight phases typically distinguished

### The Madden Julian Oscillation (MJO) (Madden & Julian 1971, 1972)

Dominant mode of intraseasonal variability in the tropics



#### Main properties

•Coupled enhanced/suppressed convection dipole propagating eastward ( $v_{prop}$ ~5 m/s)

- •Typical period ~ 40-50 days
- •Appear in Indian Ocean weakens in eastern Pacific
- •Eight phases typically distinguished



## The MJO-NAO teleconnexion

Project : ROADMAP (JPI-Climate), Collaborations : M. Saint-Lu, S. Fromang

Starting point: evidence of MJO impact on the NAO in observational datasets (Cassou, 2008 ; Lin et al. 2008).



Our objective / approach: better understanding of the involved processes (troposphere vs stratosphere) using idealized GCM

<u>Method:</u> use of the dry version of the atmospheric model DYNAMICO. In the present case, ~200 km horiz res° and 14 vertical levels in the troposphere

 $\rightarrow$  Model steady forcing such that the model climatology is close to that observed during winter (ERA5 reanalysis taken as a reference)

 $\rightarrow$  iterative process consisting of running the model for 2 years for each iteration (Chang, 2006) to find the appropriate thermal forcing (relaxation in temperature)

 $\rightarrow$  40 years long control run with steady forcing

 $\frac{d\theta(\lambda,\varphi,p)}{dt} = -\frac{\theta(\lambda,\varphi,p) - \theta_{eq}^{n}(\varphi,p)}{\tau(\varphi,p)}$ 



Control run : 40 years of perpetual winter



Sensitivity experiments by adding an MJO-type forcing with a fixed phase → Analytically prescribed MJO forcing in the temperature tendency → Average over 480 runs of 30 days duration (Similar to Zheng and Chang, 2019).









## Separation of the 480 ctl runs into 2 sub-groups depending on the North Pacific flow at t=0

The large-scale ridge in phase 3 is potentially helping to force the NAO+ (Marie Drouard (2013)'s





## Modulation of the NAO-MJO teleconnection by the eastern North Pacific flow

Initial cond°



The effect of phase 3 (phase 6) is more pronounced in presence of a Pacific ridge (trough) at the initial time !

## Conclusions on MJO-NAO teleconnexion

- The MJO-NAO teleconnexion can be reproduced in dry GCM nonlinear simulations but also in stationary wave linear model at zero order (no need of baroclinic eddies)
- The MJO-NAO teleconnexion is modulated by the North Pacific flow: the pre-existence of a Pacific ridge (trough) helps to reinforce phase3-NAO+ (phase6-NAO-). The stationary wave model is not reproducing such an effect --> baroclinic eddies are needed !

Saint Lu et al. (2023, in preparation)

## Additional slides

## Sensitivity to SST front latitude



Latitude

Latitude

u@250mb

slope@250-500mb

Zonal mean slope

## Sensitivity to SST front latitude



u@250mb

slope@250-500mb

E-vector@250mb

## Phase 3 impact as function of a pre-existing Pacific ridge/trough



Anomalous streamfunction with respect b cas PACridge fort 228 4d-8d, index=0.01, cor=0.37 b cas PACridge faible 252 4d-8d, index=0.01, cor=0.42 b cas PACridge faible 252 4d-8d, index=0.01, cor

# Jore <td

30°E

90°E

150°E

150°W

30°W

₽°N

30°E

90°E

150°W

150°E

90°W

30°W

## Phase 6 impact as function of a pre-existing Pacific ridge/trough



## Anomalous streamfunction with respect to control runs



## Non stationary vs stationary background flow



## The Potential Vorticity perspective of the NAWDEX community



 $\rightarrow$  The diabatic PV modification at upper levels depends on the shape and intensity of the diabatic heating rate along WCBs

 $\rightarrow$  Potential source of forecast uncertainties

## Lien entre tempêtes et jet stream

Jet stream (Vent > 180 Dépression km/h)

a) 1 October 2016, 00 UTC



Initialisation trajectoires de masses d'air

## Lien entre tempêtes et jet stream

Jet stream (Vent > 180 km/h)

b) 1 October 2016, 12 UTC



## Lien entre tempêtes et jet stream

Jet stream (Vent > 180 km/h)



## **Cloud microphysics and warm conveyor belts**



 $\rightarrow$  Latent heat release : ~ 20K over 48h (Madonna et al. 2014)

→ Multiple cloud microphysics processes occur within WCBs : 10 K due to condensation of vapour, depositional growth of snow (Joos and Wernli, 2012)

Riming, aggregation can be important (Gehring et al. 2020)

 $\rightarrow$  Sensitivity of WCBs and jet stream to different representations of clouds microphysics (Joos and Forbes, 2016)

## **Addressed questions**

**1-** Which microphysical processes along WCBs have more impact on the jet stream ?

2- Which microphysical processes lead to the largest forecast uncertainties ?

Methodology

•  $\rightarrow \Delta X \Delta Y \rightarrow 2.5 \text{ km}*2.5 \text{ km}$  (explicit convection)

- $\rightarrow$  2-3 days forecasts of **NAWDEX IOPs** (mainly IOP6, and also IOP9) Output : every 15min
- $\bullet \rightarrow$  CI and forcing : Global operational model ARPEGE
- $\rightarrow$  Two cloud microphysics schemes ICE3 (Pinty and Jabouille, 1998) and LIMA (Vié et al. 2016)

## Tools

Model

 $\rightarrow$  Lagrangian trajectories and PV framework

**Meso-NH** 

→ Double comparison in the model and observations space : radar simulator along flight track (Borderies et al. 2018) + cloud properties retrieval algorithm (Delanoe and Hogan, 2010 ; Cazenave, 2019)

## **Comparison between 2 different microphysical schemes**



#### ICE3 (Actually used in French NWP model)

- Droplet, rain, graupel, snow and ice mass mixing ratio pronostic (one-moment scheme)
- Cold phase (and mixed) :
- Deposition of all vapor in excess on ice and droplets (adjustment to saturation)
- Vapor deposition on snow and graupel only in mixed phase
   Subgrid condensation scheme
- ♦(allow to consider condensate in a mesh with RH < 100%)</p>

#### LIMA (In future ?)

- Droplets, rain, graupel, snow and ice mass mixing ratio pronostics and droplet, rain, ice number concentrations pronostics (quasi two-moments scheme)
- Cold phase (and mixed) :
  Explicit vapor deposition on ice, snow and graupel

## Which run perfoms better in representing the ridge building ?



- $\rightarrow$  ICE3 better represents the leading edge of the ridge building
- → Discrepancies between ICE3 and LIMA is supposed to rely on vapor deposition on ice

## Eddy-driven jets processes



• Schematic of Rossby wave propagation from a stirring region, momentum transport and impact on the zonal mean flow. D'après Vallis (2006)

# The Madden Julian Oscillation (MJO)<br/>(Madden & Julian 1971, 1972)Dominant mode of intraseasonal variability in the<br/>tropics



## **Main properties**

•Coupled enhanced/suppressed convection dipole propagating eastward ( $v_{prop}$ ~5 m/s)

- •Typical period ~ 40-50 days
- •Appear in Indian Ocean weakens in eastern Pacific

## *The Madden Julian Oscillation (MJO)* (Madden & Julian 1971, 1972)

## Dominant mode of intraseasonal variability in the tropics



•Coupled enhanced/suppressed convection dipole